Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 893: 164766, 2023 Oct 01.
Article in English | MEDLINE | ID: covidwho-20238295

ABSTRACT

Wastewater-based epidemiology (WBE) is a promising approach for monitoring the spread of SARS-CoV-2 within communities. Although qPCR-based WBE is powerful in that it allows quick and highly sensitive detection of this virus, it can provide limited information about which variants are responsible for the overall increase or decrease of this virus in sewage, and this hinders accurate risk assessments. To resolve this problem, we developed a next generation sequencing (NGS)-based method to determine the identity and composition of individual SARS-CoV-2 variants in wastewater samples. Combination and optimization of targeted amplicon-sequencing and nested PCR allowed detection of each variant with sensitivity comparable to that of qPCR. In addition, by targeting the receptor binding domain (RBD) of the S protein, which has mutations informative for variant classification, we could discriminate most variants of concern (VOC) and even sublineages of Omicron (BA.1, BA.2, BA.4/5, BA.2.75, BQ.1.1 and XBB.1). Focusing on a limited domain has a benefit of decreasing the sequencing reads. We applied this method to wastewater samples collected from a wastewater treatment plant in Kyoto city throughout 13 months (from January 2021 to February 2022) and successfully identified lineages of wild-type, alpha, delta, omicron BA.1 and BA.2 as well as their compositions in the samples. The transition of these variants was in good agreement with the epidemic situation reported in Kyoto city during that period based on clinical testing. These data indicate that our NGS-based method is useful for detecting and tracking emerging variants of SARS-CoV-2 in sewage samples. Coupled with the advantages of WBE, this method has the potential to serve as an efficient and low cost means for the community risk assessment of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Sewage
2.
Biochem Biophys Res Commun ; 645: 132-136, 2023 02 19.
Article in English | MEDLINE | ID: covidwho-2176742

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health concern worldwide. Ensitrelvir (S-217622) has been evaluated as an antiviral treatment for COVID-19, targeting SARS-CoV-2 3C-like protease (3CLpro). Ensitrelvir has been reported to have comparable antiviral activity against some of the SARS-CoV-2 variants: alpha, beta, gamma, delta, and omicron (BA.1.18). In this paper, we describe that ensitrelvir is effective against newly emerging SARS-CoV-2 variants and globally prevalent 3CLpro mutations. Ensitrelvir exhibited comparable antiviral activity against SARS-CoV-2 variants, including recently emerging ones: omicron (BA1.1, BA.2, BA.2.75, BA.4, BA.5, BQ.1.1, XBB.1, and XE), mu, lambda, and theta. Genetic surveillance of SARS-CoV-2 3CLpro, the target of ensitrelvir, was conducted using a public database and identified 11 major 3CLpro mutations circulating globally (G15S, T21I, T24I, K88R, L89F, K90R, P108S, P132H, A193V, H246Y, and A255V). The 3CLpro mutation from proline to histidine at amino acid position 132 was especially identified in the omicron variant, with prevalence of 99.69%. Enzyme kinetic assay revealed that these 3CLpro mutants have enzymatic activity comparable to that of the wild type (WT). Next, we assessed the inhibitory effect of ensitrelvir against mutated 3CLpro, with it showing inhibitory effects similar to that against the WT. These in vitro data suggest that ensitrelvir will be effective against currently circulating SARS-CoV-2 variants, including omicron variants and those carrying 3CLpro mutations, which emerging novel SARS-CoV-2 variants could carry.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL